Presets specified: ['best_quality']
Stack configuration (auto_stack=True): num_stack_levels=0, num_bag_folds=8, num_bag_sets=1
Beginning AutoGluon training ...
AutoGluon will save models to "AutogluonModels/ag-20231011_125833/"
AutoGluon Version: 0.8.2
Python Version: 3.8.18
Operating System: Linux
Platform Machine: x86_64
Platform Version: #26~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Thu Jul 13 16:27:29 UTC 2
Disk Space Avail: 738.82 GB / 982.82 GB (75.2%)
Train Data Rows: 9009
Train Data Columns: 3
Label Column: is_fraud
Preprocessing data ...
AutoGluon infers your prediction problem is: 'binary' (because only two unique label-values observed).
2 unique label values: [1, 0]
If 'binary' is not the correct problem_type, please manually specify the problem_type parameter during predictor init (You may specify problem_type as one of: ['binary', 'multiclass', 'regression'])
Selected class <--> label mapping: class 1 = 1, class 0 = 0
Using Feature Generators to preprocess the data ...
Fitting AutoMLPipelineFeatureGenerator...
Available Memory: 12201.29 MB
Train Data (Original) Memory Usage: 0.22 MB (0.0% of available memory)
Inferring data type of each feature based on column values. Set feature_metadata_in to manually specify special dtypes of the features.
Stage 1 Generators:
Fitting AsTypeFeatureGenerator...
Stage 2 Generators:
Fitting FillNaFeatureGenerator...
Stage 3 Generators:
Fitting IdentityFeatureGenerator...
Stage 4 Generators:
Fitting DropUniqueFeatureGenerator...
Stage 5 Generators:
Fitting DropDuplicatesFeatureGenerator...
Types of features in original data (raw dtype, special dtypes):
('float', []) : 2 | ['amt', 'distance_km']
('int', []) : 1 | ['trans_date_trans_time']
Types of features in processed data (raw dtype, special dtypes):
('float', []) : 2 | ['amt', 'distance_km']
('int', []) : 1 | ['trans_date_trans_time']
0.0s = Fit runtime
3 features in original data used to generate 3 features in processed data.
Train Data (Processed) Memory Usage: 0.22 MB (0.0% of available memory)
Data preprocessing and feature engineering runtime = 0.04s ...
AutoGluon will gauge predictive performance using evaluation metric: 'accuracy'
To change this, specify the eval_metric parameter of Predictor()
User-specified model hyperparameters to be fit:
{
'NN_TORCH': {},
'GBM': [{'extra_trees': True, 'ag_args': {'name_suffix': 'XT'}}, {}, 'GBMLarge'],
'CAT': {},
'XGB': {},
'FASTAI': {},
'RF': [{'criterion': 'gini', 'ag_args': {'name_suffix': 'Gini', 'problem_types': ['binary', 'multiclass']}}, {'criterion': 'entropy', 'ag_args': {'name_suffix': 'Entr', 'problem_types': ['binary', 'multiclass']}}, {'criterion': 'squared_error', 'ag_args': {'name_suffix': 'MSE', 'problem_types': ['regression', 'quantile']}}],
'XT': [{'criterion': 'gini', 'ag_args': {'name_suffix': 'Gini', 'problem_types': ['binary', 'multiclass']}}, {'criterion': 'entropy', 'ag_args': {'name_suffix': 'Entr', 'problem_types': ['binary', 'multiclass']}}, {'criterion': 'squared_error', 'ag_args': {'name_suffix': 'MSE', 'problem_types': ['regression', 'quantile']}}],
'KNN': [{'weights': 'uniform', 'ag_args': {'name_suffix': 'Unif'}}, {'weights': 'distance', 'ag_args': {'name_suffix': 'Dist'}}],
}
Fitting 13 L1 models ...
Fitting model: KNeighborsUnif_BAG_L1 ...
0.7325 = Validation score (accuracy)
0.01s = Training runtime
0.01s = Validation runtime
Fitting model: KNeighborsDist_BAG_L1 ...
0.737 = Validation score (accuracy)
0.0s = Training runtime
0.01s = Validation runtime
Fitting model: LightGBMXT_BAG_L1 ...
Fitting 8 child models (S1F1 - S1F8) | Fitting with ParallelLocalFoldFittingStrategy
0.8918 = Validation score (accuracy)
1.14s = Training runtime
0.17s = Validation runtime
Fitting model: LightGBM_BAG_L1 ...
Fitting 8 child models (S1F1 - S1F8) | Fitting with ParallelLocalFoldFittingStrategy
0.9003 = Validation score (accuracy)
0.79s = Training runtime
0.03s = Validation runtime
Fitting model: RandomForestGini_BAG_L1 ...
0.887 = Validation score (accuracy)
0.39s = Training runtime
0.2s = Validation runtime
Fitting model: RandomForestEntr_BAG_L1 ...
0.8876 = Validation score (accuracy)
0.53s = Training runtime
0.21s = Validation runtime
Fitting model: CatBoost_BAG_L1 ...
Fitting 8 child models (S1F1 - S1F8) | Fitting with ParallelLocalFoldFittingStrategy
0.8993 = Validation score (accuracy)
2.63s = Training runtime
0.01s = Validation runtime
Fitting model: ExtraTreesGini_BAG_L1 ...
0.8818 = Validation score (accuracy)
0.32s = Training runtime
0.23s = Validation runtime
Fitting model: ExtraTreesEntr_BAG_L1 ...
0.8813 = Validation score (accuracy)
0.32s = Training runtime
0.24s = Validation runtime
Fitting model: NeuralNetFastAI_BAG_L1 ...
Fitting 8 child models (S1F1 - S1F8) | Fitting with ParallelLocalFoldFittingStrategy
0.8664 = Validation score (accuracy)
8.79s = Training runtime
0.13s = Validation runtime
Fitting model: XGBoost_BAG_L1 ...
Fitting 8 child models (S1F1 - S1F8) | Fitting with ParallelLocalFoldFittingStrategy
0.8993 = Validation score (accuracy)
0.79s = Training runtime
0.04s = Validation runtime
Fitting model: NeuralNetTorch_BAG_L1 ...
Fitting 8 child models (S1F1 - S1F8) | Fitting with ParallelLocalFoldFittingStrategy
0.8862 = Validation score (accuracy)
15.89s = Training runtime
0.07s = Validation runtime
Fitting model: LightGBMLarge_BAG_L1 ...
Fitting 8 child models (S1F1 - S1F8) | Fitting with ParallelLocalFoldFittingStrategy
0.8928 = Validation score (accuracy)
1.36s = Training runtime
0.03s = Validation runtime
Fitting model: WeightedEnsemble_L2 ...
0.922 = Validation score (accuracy)
2.2s = Training runtime
0.01s = Validation runtime
AutoGluon training complete, total runtime = 43.5s ... Best model: "WeightedEnsemble_L2"
TabularPredictor saved. To load, use: predictor = TabularPredictor.load("AutogluonModels/ag-20231011_125833/")